
Automated backward
analysis of

PKCS#11 v2.20
Robert Künnemann — Technische Universität Darmstadt

1

PKCS#11
• defines API for cryptographic operations

• used to access:

• Hardware Security Modules (HSMs)

• Smart cards

• Software implementations, e.g. in Firefox

2

© 2013 Thales e-Security,

PKCS#11
• goal: protect cryptographic material:

3

Protocol

API API

PKCS#11
• goal: protect cryptographic material:

4

• corollary: must contain keys and implement
cryptographic functions

• indirect access via handles

• security property: "sensitive" keys cannot be
learned, even by corrupted parties

PKCS#11 (core)
• key-usage:

• symmetric encryption/decryption

• etc.

• key-management:

• creation of keys

• export (wrapping) and import (unwrapping)

• handles map to keys ⨉ templates (= set of attributes, e.g. enc,
dec, wrap, unwrap, sensitive,..)

5

Contributions
• formal model of PKCS#11v2.20 in cryptographic

process calculus with state (Dolev-Yao model)

• policy that allows for secure backup of usage-keys

• secrecy of sensitive keys established using
backward analysis

• less automated, but more flexible than previous
models

• proof finding heuristics for PKCS#11

6

Clulow's attack

7

W

d

wrap(h,h)

c=

set_wrap(h)

set_decrypt(h)

decrypt(h,c)

k !!

{|k|}k

Policies

• incomplete implementation of PKCS#11

• typically restricts creation/import of keys
(templates) and attribute changes

8

PKCS#11 v2.20
• new attributes:

• wrap-template: wrap k under kw 
template of k have to match kw's wrap template

• unwrap-template: import key in c using kw 
handle to new key will have template matching
kw's unwrap template

• recursive: templates contain attributes wrap-
template and unwrap-template

9

Policy (simplified)

10

name wrap/unwrap enc/dec sensitive wt/ut

trusted • • usage

usage • • -

untrusted • -

Approach

11

SAPIC[KK2014]

Definition 5 (Validity, satisfiability). Let Tr ✓ (P(G))⇤ be a set of traces. A trace
formula ' is said to be valid for Tr , written Tr ✏8

', if for any trace tr 2 Tr and any
valuation ✓ we have that (tr , ✓) ✏ '.

A trace formula ' is said to be satisfiable for Tr , written Tr ✏9
', if there exist a

trace tr 2 Tr and a valuation ✓ such that (tr , ✓) ✏ '.

Note that Tr ✏8
' iff Tr 6✏9 ¬'. Given a ground process P we say that ' is valid,

written P ✏8
', if tracespi(P) ✏8

', and that ' is satisfied in P , written P ✏9
', if

traces

pi(P) ✏9
'.

4 Model

In this section, we will introduce our model of a PKCS#11 token. The complete code is
available at http://sapic.gforge.inria.fr/pkcs11templates.zipand
in Appendix B. We consider a security device that allows the creation of keys in its se-
cure memory. The user can access the device via an API. If he creates a key, he obtains
a handle, which he can use to let the device perform operations on his behalf. For each
handle the device also stores a list of attributes, which define what operations are per-
mitted for this handle. The goal is that the user can never gain knowledge of the key,
as the user’s machine might be compromised. We model the device by the following
process (we use out(m) as a shortcut for out(c,m) for a public channel c):

P

init

; !(P
create

| P
dec

| P
enc

| P
wrap

| P
unwrap

| P
get_keyval), where

P

init

:=
/⇤ wrap, unwrap, enc, dec, sens , extr , trus , wwt , wt , ut ⇤/
insert h’ template ’ , ’ trusted ’i ,

h ’on’ , ’on’ , ’ off ’ , ’ off ’ , ’on’ , ’on’ , ’on’ , ’on’ , ’usage’ , ’usage’i;
insert h’ template ’ , ’usage’i ,

h’ off ’ , ’ off ’ , ’on’ , ’on’ , ’on’ , ’on’ , ’ off ’ , ’on’ , ’undef’ , ’undef’i;
insert h’ template ’ , ’ untrusted ’i ,

h’ off ’ , ’ off ’ , ’on’ , ’on’ , ’ off ’ , ’on’ , ’ off ’ , ’ off ’ , ’undef’ , ’undef’i;

This sets up the templates before starting operation in the replicated process. Key-
generation is handled by P

create

:

P

create

:= in(h’create’,atts,ptri);
lock ’device ’ ;
⌫ h; ⌫ k;
lookup h’ template ’ , ptr i as templ in

if permits(attwrap(templ) , [. . .], attut(templ),
attwrap(atts) , [. . .], attut(atts)) then

event NewKey(h,k,attsens (atts));
insert h’obj’ ,hi , hk, atts i;
event WrapKey(h,k,attwrap(atts)); event DecKey(h,k, attdec (atts));
event EncKey(h,k, attenc (atts)); event UnwrapKey(h,k,attunwrap(atts));
out(h) ;
unlock ’device ’

tamarin[S+2012]

l � [a] ! r

✔/✖/∞

+ helping lemmas

• backward-analysis

• interactive

• automatic w/ custom
heuristics

Modelling

12

Definition 5 (Validity, satisfiability). Let Tr ✓ (P(G))⇤ be a set of traces. A trace
formula ' is said to be valid for Tr , written Tr ✏8

', if for any trace tr 2 Tr and any
valuation ✓ we have that (tr , ✓) ✏ '.

A trace formula ' is said to be satisfiable for Tr , written Tr ✏9
', if there exist a

trace tr 2 Tr and a valuation ✓ such that (tr , ✓) ✏ '.

Note that Tr ✏8
' iff Tr 6✏9 ¬'. Given a ground process P we say that ' is valid,

written P ✏8
', if tracespi(P) ✏8

', and that ' is satisfied in P , written P ✏9
', if

traces

pi(P) ✏9
'.

4 Model

In this section, we will introduce our model of a PKCS#11 token. The complete code is
available at http://sapic.gforge.inria.fr/pkcs11templates.zipand
in Appendix B. We consider a security device that allows the creation of keys in its se-
cure memory. The user can access the device via an API. If he creates a key, he obtains
a handle, which he can use to let the device perform operations on his behalf. For each
handle the device also stores a list of attributes, which define what operations are per-
mitted for this handle. The goal is that the user can never gain knowledge of the key,
as the user’s machine might be compromised. We model the device by the following
process (we use out(m) as a shortcut for out(c,m) for a public channel c):

P

init

; !(P
create

| P
dec

| P
enc

| P
wrap

| P
unwrap

| P
get_keyval), where

P

init

:=
/⇤ wrap, unwrap, enc, dec, sens , extr , trus , wwt , wt , ut ⇤/
insert h’ template ’ , ’ trusted ’i ,

h ’on’ , ’on’ , ’ off ’ , ’ off ’ , ’on’ , ’on’ , ’on’ , ’on’ , ’usage’ , ’usage’i;
insert h’ template ’ , ’usage’i ,

h’ off ’ , ’ off ’ , ’on’ , ’on’ , ’on’ , ’on’ , ’ off ’ , ’on’ , ’undef’ , ’undef’i;
insert h’ template ’ , ’ untrusted ’i ,

h’ off ’ , ’ off ’ , ’on’ , ’on’ , ’ off ’ , ’on’ , ’ off ’ , ’ off ’ , ’undef’ , ’undef’i;

This sets up the templates before starting operation in the replicated process. Key-
generation is handled by P

create

:

P

create

:= in(h’create’,atts,ptri);
lock ’device ’ ;
⌫ h; ⌫ k;
lookup h’ template ’ , ptr i as templ in

if permits(attwrap(templ) , [. . .], attut(templ),
attwrap(atts) , [. . .], attut(atts)) then

event NewKey(h,k,attsens (atts));
insert h’obj’ ,hi , hk, atts i;
event WrapKey(h,k,attwrap(atts)); event DecKey(h,k, attdec (atts));
event EncKey(h,k, attenc (atts)); event UnwrapKey(h,k,attunwrap(atts));
out(h) ;
unlock ’device ’

Upon reception of a key generation request with a list of attributes and a pointer to a
template, the device is locked. Then, the device creates a new handle h and a key k. The
pointer is retrieved from the database P

init

has written to. The functions attwrap, to
attut are simple deconstructors, attwrap, for example, extracts the first element from
a list of 10 attributes (see Tab. 1). The predicate permits compares the attributes given
by the adversary with the attributes stored with the template. In subsection 2.2, we
have argued that templates should determine the key’s attributes, hence permits is true
if and only if the attributes including the pointers to the templates match exactly. To
obtain a more permissive modelling, this predicate can be altered, e. g., to allow for
certain attributes to be changed.

The creation of keys is logged as an event NewKey(h, k, attsens(atts)). If the third
argument is ‘on’, this key is sensitive, i. e., secrecy needs to be preserved. Events are
used to state security properties and helping lemmas. Next, the device stores the key that
belongs to the handle by associating the pair h‘key’, hi to the value of the key k and the
attributes. The events WrapKey to UnwrapKey are used to refer to the attributes of
keys in helping lemmas and otherwise irrelevant. Finally, the handle is output and the
device unlocked.

Remark 1. The predicate permits compares the attributes, including the pointers wt
and ut, literally. Since our policy only accepts pointers to templates created by P

init

,
and since those are distinct, this is without loss of generality. Furthermore, the adversary
has to provide the pointer to the template, which is without loss of generality, too, since
the pointers are of sort pub.

If a handle has the ‘dec’ attribute set, it can be used for decryption:

P

dec

:= in(hh,senc(m,k)i);
lock ’device ’ ;
lookup h’obj’ ,hi as v in

if can_decrypt(attwrap(tem(v)) , [. . .], attut(tem(v))) then

if key(v)=k then

event DecUsing(k,m); out(m); unlock ’device ’

The lookup stores the value associated to h‘obj’, hi in v. The predicate can_decrypt
is satisfied, iff. the fourth argument, attdec(tem(v)) equals ‘on’. The function symbol
tem extracts the second element of a pair, it is defined by the equation tem(hk, ti) = t.
Similarly, key(hk, ti) = k. If the key stored with this handle matches the key used to
generate the encryption, the plain-text is output and the device unlocked.

If a key has the ‘wrap’ attribute set, it can be used to encrypt the value of a second
key:

P

wrap

:= in(hh1,h2i);
lock ’device ’ ;
lookup h’obj’ ,h1i as v1 in

lookup h’obj’ ,h2i as v2 in

if can_wrap(attwrap(tem(v1)) , [. . .], attut(tem(v1)),
attwrap(tem(v2)) , [. . .], attut(tem(v2))) then

lookup h’ template ’ , attwt (tem(v1))i as wt in

if permits(attwrap(wt) , [. . .], attut(wt),
attwrap(tem(v2)) , [. . .], attut(tem(v2))) then

event Wrap(key(v1),key(v2));
out(senc(key(v2) , key(v1)));
unlock ’device ’

Given the two handles h1 and h2, the corresponding keys and attributes are retrieved.
The predicate can_wrap is defined in Example 2 on page 10. If the template referred
to by the entry ‘wt’ in the first key’s attribute list permits wrapping the second key, i. e.,
it is equal to the second handle’s attributes, then the encryption is output. The complete
model including P

enc

, P
unwrap

and P

get_keyval can be found in Appendix B.

Limitations While being more detailed than previous works in terms of the attributes
and commands supported, our model does have the following limitations: Integrity of
wrappings. In our model, a wrapping can only be imported if it is an encryption of
some message with a key that is on the device. In reality, this integrity property cannot
be given. There are techniques that allow to account for malleability of cypher-texts
in the symbolic model [3]. The current draft for version 2.40 indicates that authenti-
cated encryption might be part of the future version of this standard [21] . Multiple
tokens. We currently model a single token. By encapsulating the current process P

in ⌫device : pub.P and prepending device to database keys, this situation could be
modelled. Copying keys, asymmetric keys, key derivation. C_CopyObject, support for
asymmetric keys and key-derivation are not modelled for various reasons explained in
Section 2.1. While we conjecture copying objects could be enabled, and asymmetric
keys as well as key-derivation keys be allowed as ‘usage’ keys, this is missing in the
current model (as opposed to other related work [11, 7]).

5 Security Results for the Proposed Policy

The main security result is the secrecy of keys generated on the device that have been
marked ‘sensitive’ upon creation, in our case, keys created with the templates ‘trusted’
or ‘usage’. This is expressed by the following trace formula:

¬(9h, k : msg , i, j : temp. NewKey(h, k, ’on’)@i ^K(k)@j)

The action NewKey refers to the event in the key-generation process P
create

, which we
introduced in Section 4. If the third argument is ‘on’, k has been created ‘sensitive’. To
derive the result, we have defined 9 helping lemmas, four of which are rather trivial,
but help speeding up the proof. The first, dec_limits, establishes typing invariants, most
importantly, it states that decrypt is not useful to the adversary: Any message obtained
by decryption was either known to the adversary in advance, or a key that was created
‘sensitive’ or imported was leaked, or there was some key that had the attributes ‘wrap’
and ‘dec’ set at different points in time. The following four lemmas state that given the
templates it is, e. g., not possible to create a key with ‘trusted’ as wrapping template.
The lemma bad_keys states that a key that was created by unwrapping must earlier
have been created on the device, unless something bad happened, i. e., either a sensitive

Verification
• drawback: helping lemmas need to be written (but are

verified automatically)

• standard 'smart' heuristic fails, e.g. wastes time on
deduction of handles

• heuristics adapted to use case, e.g. resolve template
lookups first

• optimisations for SAPIC output in general, e.g.
resolve unlock operations and previous states right
away

13

Proof
• drawback: helping lemmas need to be written (but

are verified automatically)

1. message obtained by decryption was input by
adversary OR a bad thing happened

2. imported (unwrapped) keys were once created on
device OR a bad thing happened

3. if one bad thing happened, a worse thing
happened before

14

Evaluation

15

interaction

lemma no heuristics heuristics

dec_limits 11 0

bad_keys 0 0

no key is wrap+dec 15 0

no key is enc+unwrap 29 0

cannot obtain key 6 0

Related work

Three major lines of work:

1. protocol verification approach

2. program verification approach

3. type-checking approach

16

• security token is (sole)
participant in protocol

• early results using
model checking
[DKS2010],soundness for
static policies [FS2009,B

+2010]!

• soundness result is
model-specific (e.g.
cannot deal with
v2.20)

Related work

Three major lines of work:

1. protocol verification approach

2. program verification approach

3. type-checking approach

17

• first-order linear time
logic with past
operators [FS2010]

• manual (tableau)
proofs, backward-
analysis

• but: support for
wrap/unwrap
templates [FS2011]

Related work

Three major lines of work:

1. protocol verification approach

2. program verification approach

3. type-checking approach

18

• static analysis on
C-implementation
of token[CFL2013]

• generalised
version that maps
to PKCS#11
v2.20[AFL2013] with
similar policy

Limitations & Future work
• raise degree of automation

• synthesise lemmas (hard)

• derive "general" lemmas (heuristics may help)

• policy can be expressed without v2.20 features, and
was proven secure before [AFL2013] (using type-checking)

• try approach on "real" dynamic policy

• helping lemmas need to be altered

19

Conclusion
• backward-analysis approach can be automated (or

protocol analysis approach can be made more
precise)

• flexible and expressive modelling language in
SAPIC, precise analysis with tamarin (msr)

• no model-specific soundness results needed

• possibility of analysing "real" dynamic policies for
PKCS#11

20

Thank you for your attention.

[DKS2010] Stéphanie Delaune, Steve Kremer, and Graham Steel. “Formal
Analysis of PKCS#11 and Proprietary Extensions”. In: Journal of
Computer Security 18.6 (Nov. 2010).

[FS2009] Sibylle Fröschle and Graham Steel. “Analysing PKCS#11 Key
Management APIs with Unbounded Fresh Data”. In: Joint Workshop on
Automated Reasoning for Security Protocol Analysis and Issues in the
Theory of Security (ARSPA-WITS’09). Vol. 5511. LNCS. Springer, 2009.

[B+2010] Matteo Bortolozzo et al. “Attacking and Fixing PKCS#11 Security
Tokens”. In: CCS 2010. ACM Press, 2010.

[FS2010] Sibylle B. Fröschle and Nils Sommer. “Reasoning with Past to
Prove PKCS#11 Keys Secure”. In: FAST 2010. Vol. 6561. LNCS.
Springer, 2010.

[FS2011] Sibylle Fröschle and Nils Sommer. “Concepts and Proofs for
Configuring PKCS#11”. In: FAST 2011. Vol. 7140. LNCS. Leuven,
Belgium: Springer, 2012.

[CFL2013] Matteo Centenaro, Riccardo Focardi, and Flaminia L. Luccio.
“Type-based analysis of key management in PKCS#11 cryptographic
devices”. In: Journal of Computer Security 21.6 (2013).

[AFL2013] Pedro Adão, Riccardo Focardi, and Flaminia L. Luccio. “Type-
Based Analysis of Generic Key Management APIs”. In: CSF 2013. IEEE,
2013, pp. 97–111.

[KK2014]Steve Kremer and Robert Künnemann. “Automated analysis of
security protocols with global state”. In: Security and Privacy. IEEE
Computer Society, 2014.

[S+2012]Benedikt Schmidt et al. “Automated Analysis of Diffie-Hellman
Protocols and Advanced Security Properties”. In: CSF 2012. IEEE,
2012.

21

References

PKCS#11 (core)
• key-usage:

• symmetric/asymmetric encryption/decryption

• signatures, MAC, random number generation …

• key-management:

• creation and (unencrypted) import of keys

• export (wrapping) and import (unwrapping)

• key derivation

• keys have attributes: enc,dec,wrap,unwrap,sensitive,..

22

